
SHORTER COMMUNICATlONS 

Frc;. 5. Temperature profile Hz. 

and horizontal temperature gradient, Figs. 3 and 4, do not 

change significantly. Thus the effect of buoyancy is observed 

to be more pronounced on the secondary motion than on 

the rotation of the fluid. Likewise, the change in frictional 

resistance to the radial flow is larger than the change in 

heat transfer. The heat transfer due to ‘4 is into the disc in 

the case r, = T_,. But this is only a small fraction of the 

total heat transfer at large distances from the axis. The 

component ‘r2 is driven mainly by the radial conduction of 

heat due to r, when 7;, = T, This energy can only go into 

the wall. The profile of ‘r2. Fig. 5. gradually collapse\ as 

GKRP~ increase\ 

At Gr RP’ = 1. the velocities induc& by buoyant! arc (If 

the same order as those due to rotation. Hence. to get 
results further. the equations should be recast Into a form 

based on quantities Characterizing natural convection flow 

on the line5 followed by Rotem and C’loassen [4). 
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NOMENCLATURE 

dS,,. dS,. dS,, element of area of emitter. reflector. and 

receiver: 
(r,,. xi,. zo). {u. y. z). (X. Y: Z). coordinates of d.S,.. dS, 

and dS,, respectively: 

r. 

1.. 

i’. 

distance from emitter. cl&,. to reflector. 

dS,: 
distance from reflector. dS,. to reoeiler. 

dSz: 
reflectivity of reflector: 
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brightness of source dS,; 

unit normal of emitter, reflector and 

receiver, respectively: 

unit vector in the direction of radiation 

from emitter to reflector: 

unit vector in the direction of the radiation 

from reflector to receiver: 

energy flux density for radiation emitted 

by dSO, specularly reflected by dS,, and 

received by dSz ; 

where (ix, ii, c) specify the direction of reflected ray which 

satislies the law of reflection and are the components of 

i’ = i - 2n,(i. n,). 

Analogous to [l] the ratio dS,/dS, appearing in (1) can be 

written as 

dS, _ I(&‘#r;) x (X/al’) / a(U, V) -- 
dS, IWW x @l~u)~ a04 0) 

(4) 

specular view function which represents where the functional relationship between u,r and li, V 
that portion of radiant flux leaving source required to evaluate the jacobian a(fJ, V)/&. v) = (aCJ/&) 
dS,, specularly reflected by dS,, and (W/&) - (afJ/au)(W/au) is given by (3). From the quotient 
incident upon dS,. property of jacobians [3] 

1. IN’I’RODUCIXON 

IN REFERENCE [1] a technique is described for calculating 

the flux density, that is, the energy per unit area per unit 

time over an arbitrary receiver surface when the incident 

radiation is specularly reflected from an arbitrary reflecting 

surface. The surface equation of both the receiver and 

reflector surface are expressed in the explicit Cartesian form, 

z = z(x, y). In this paper the problem is formulated in general 

curvilinear coordinates. An expression is derived for the 

view function for radiation leaving an element of area dS,, 

specularly reflected by dS, and incident upon dSz. These 

results are used to calculate the heat flux emitted from a tin 

at one end of a cylinder, reflected by the cylinder and 

received by a fin at the other end. Results may be compared 

with the same problem treated by the image method of [2]. 

2. GENERAL FORMALISM 

The energy flux per unit receiver area dS, for radiation 

which is emitted by dSO, intercepted by dS, and then 

specularly reflected to dS2 is given by the flux flow equation 

Cl1 

d&.m- dsr = 

pBn,. ia,. ids, 

irr2 j dS,/dS,I 
(1) 

Equations for the reflector surface and the receiver surface 

in parametric form are 

X = x(u, 0)I + y(u, u).J + z(u. o)K (2a) 

X = X(U, V)Z + Y(U, V)J + Z(LJ, V)K (2b) 

where a, v and li, V are curvilinear coordinates [3]. The 

equation of the reflected ray is 

F,(u, 0; c’, V) = i;(u, v)[X(c’, V) - x(u, a,] 

-(LI,U)[Z(cT, V) - z(u, u,] = 0 

F,(u, u; U, V) = i:(u. u)[Y(U, V) - y(u, u)] 
(3) 

-(II, r)[Z(U, V) - z(u, u,] = 0 

a(u, v) a(F,, FZ)/a(a, a) 

___ = a(F,, F,)/a(u, 9’ ah t.1 
(5) 

The jacobians a(F,, F&/a@, u) and a(F,, FJa(r;, V) can be 

evaluated directly from (3) by using the chain rule for partial 

differentiation, for example, 

iF 
-L= 
au 

- j:g + jig - (Z - z)f?$ + (X _ ,y)z, 
u 

One obtains the results 

a(F,, F2yatU, 0) = i:{I, + r’l, + (r’)21,} 

av,, ~,)/d(u, v) = ‘:{I”. (ax/au) x (axjav)} 
(6) 

where 

I, = r” .(s~jh)x(ax/a~) 

1, = r.[(axjaq x (al/au) + (ai'/aq x (ax/au)] 

I, = f.(ar/aq x (at/au) 

r’ = (2 - .)/ii. 

Combining (4), (5) and (6) with (1) gives an explicit expression 

for ds,so - dsz’ 
Since the view function for specular reflection, 

dF dSo_dSz, represents that portion of the radiant flux leaving 

an element of area dS,, specularly reflected by dS,, and 

then incident upon dSz one can write a general expression 

for the specular view function as 

dFdSo-dS1 = 
Cb%,-cd $1 

s BdSo 
so 

= 
pn,. in,. in,. i’j (ax/au) x (ax/au) 1 ds, ds, 

S,d~I, + r’l, + (r’)*I,) (7) 

The brightness B is regarded as constant over S,. The terms 

I,, I,, I, express the role of the curvature of the reflector 

surface in the final expression for dedSO_ds or dFdSo_ti2. 

It is possible to express (7) in tern& of the intrinsic 
geometry of the reflector surface, that is, the gaussian, the 



1494 SHORTER COMMUNICATIONS 

mean, and the normal curvature. When this is done and the 

curvature is allowed to go to zero, that is, when the element 

of reflector surface is degenerated to a flat element ofsurface. 

(7) becomes 

(8) 

Equation (8) is the formula given by [2] for the specular 

view function but we see that all curvature terms are missing. 

Thus view function of [2] does not represent the proper 

generalization to curved surfaces. 

using (8). Because of the axial symmetry the energy flux 

per unit area emitted by the right fin and received by the left 

fin is independent of the azimuthal angle a1 of the receiver 

coordinates. Thus, we can fix dSZ at rZ = 0. The element of 

receiver area dS, is defined by a point P, = (X, Y %) 
(0, p. 0) where p is the radial distance from the origin of the 

left fin. The emitter point and reflector point are similarly 

defined by the points pa = (q sin l,,, q cos a”. L) and P, = 

(x, I’. 2) = (a sin o, a cos co, z), respectively, where y and I,) 

are the radial and azimuthal coordinates of the emitting 

point on the right fin, and z and w are the axial and azimuthal 

coordinates of the reflecting point on the cylinder wall. In 

FIG. 1. Double finned cylinder 

The energy received per unit area of receiver surface, 

F SO_dS2, after being specularly reflected by the reflecting 

surface expressed as a fraction of the total energy emitted 

by the source is obtained by dividing (7) by dS, and inte- 

grating over S,. Similarly, the fraction of the total energy 

F so_s2 emitted by the source surface, specularly reflected, 

and received by the receiver surface is obtained by integrat- 

ing (7) over S, and S,. 

3. EXAMPLE 

As an example of the use of the preceding formulas we 

shall calculate the fraction of the energy emitted by a tin 

S,, specularly reflected by a cylinder, S,, and received by a 

second fin, S, (Fig. 1). This will be shown as a function of 

the receiving tin radial coordinate (flux contours). The total 

specular view factcr, FSo_S2, for the receiving tin will also 

be calculated. The latter calculatton is performed in [2] 

terms of these coordinates one can write the following 

expressions: 

1. Normal on reflecting surface: 

a, = sinwl+ cos wJ. (9a) 

2. Unit vector along direction of incident radiation form 

P, to P,: 

i = [(a sin w - q sin a,)Z + (a cos CD - q cos ro)J 

+ (z - L)K],k (9b) 

where r2 = a’ + qz f (L - z)* - 2aq cos (go - m). 

3. Unit vector along direction of reflected radiation form 

P, to P, : 

i’ = {[q sin (20 - rxn) - a sin w]Z 4 [y cos (2w - a(,) 

- a cos co]/ + (Z - L)K)/r. (94 
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FIG. 2. Fraction of energy emitted by right fin, specularly 
reflected from cylinder wall and intercepted per unit area 
of receiving fin as a function of dimensionless radial coordin- 

ate p/a for M = hla = 2. 

Combining (SC) with (3) one has the following equations 

for the reflected ray: 

X = a sin 0 + z[q sin (2~ - a,) - a sin cu]/(L - Z) 

Y = a cos w + z[q cos (20 - a,) - a cos co]@ - z), 

(10) 

Evaluating the functions I,,, I,, I, from (6) with z, o as the 

variables IJ, u and assuming that the reflectivity of the 

cylinder wall is unity one obtains the following expression 

for fraction of the total energy flux per unit area on receiver 

surface. S, in terms of the dimensionless quantities 

[ = p/a, ye = q/a, p = z/a, M = b/a, and N = L/a; 

1 -cos-‘(l/S)-cos -‘(l/q) 

rl(tlcos (0 - a,,) - l)(B - W4 
’ [1+q2+(N-~)2-2~cos(~-aa,)]z~[~N(4jI-N) 

x cos (o-x,)-2flN(l+t/*)+N*\ (11) 

where the limits of a,, are such that a .i = 0. Before (11) 

can be integrated, one must eliminate p and w. This can be 

done by solving (10) for z( = /?a) and w 

/I = N(( - cos o)/[[ + n cos (20 - ao) - 2 cos 011 

sin(2w -cts)=n-‘sine +[-‘sin(w -a& (12) 

The results for (dFsO_,s,)/dS, as a function of [for N =0.5, 

1,2,4, 8 and M = 2 are presented in Fig. 2. 

Integrating (11) over dS,( = pdp da, = [dlda,) gives 

the fraction of the total energy FSo_s2 emitted by the source, 

specularly reflected and received by S,. The results for F,,, _ s 
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FIG. 3. Fraction of energy emitted by right tin, specularly 
reflected by cylinder wall, and received by left tin. 
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as a function of M for five different values of N are presented 

in Fig. 3. 

For comparison, the fraction of the total energy emitted 

by S, and directly incident upon Sz, without reflection, is 

shown in Fig. 4. 
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CP 
k 
h 19’ 
k, 
K 
L, 
m, 
P. 
Pe, 

4, 
S, 
T, 
x 

NOMENCLATURE 

specific heat ; 
enthalpy; 
latent heat of vaporization; 

thermal conductivity: 

permeability; 

length of porous section; 
mass flow rate per unit area = pu; 

pressure; 
P&cl&t number = mC,LJk = RePrLld; 
heat flux per unit area; 

interface position: 

temperature; 
distance coordinate. 

Greek symbols 

A, conduction-convection difference; 

0% dimensionless temperature: 

P> viscosity; 

v, kinematic viscosity = p/p; 

P, convection-conduction ratio. 

Dimensionless quantities 

C, = C,JC,,; 
F, s tiJrn,; 
H, 3 h,,(T*)/[h,(T*) - hJTx)I; 

R, = v.Iv,.; 
6, = Lfl/kr<,,(T* - 7,): 

K. 
i. 

= kL,,,lk,,,, ; 
= d&/d5 


