F16. 3. Temperature profile H,.

and horizontal temperature gradient, Figs. 3 and 4, do not
change significantly. Thus the effect of buoyancy is observed
to be more pronounced on the secondary motion than on
the rotation of the fluid. Likewise, the change in frictional
resistance to the radial flow is larger than the change in
heat transfer. The heat transfer due to T, is into the disc in
the case T, = T,. But this is only a small fraction of the
total heat transfer at large distances from the axis. The
component T, is driven mainly by the radial conduction of
heat due to 7, when T, = T,. This energy can only go into

Int. J. Hear Mass Transfer. Vol 16, pp. 1492-1496.  Pergamon Press 1973,
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the wall. The profile of 7,, Fig. 5, gradually collapses as
GriRe? increases.

At Gr:Re* = 1. the velocities induced by buoyancy are of
the same order as those due to rotation. Hence to get
results further. the equations should be recast into a form
based on guantities characterizing natural convection flow
on the lines followed by Rotem and Claassen [4]
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NOMENCLATURE

element of area of emitter. reflector. and
receiver:

{Xpe For Zo)h L 3 2L XL Yo Z). coordinates of dS,. dS,
and dS,, respectively:

dS,. ds,. dS,,

v distance from emitter, dS,. to reflector.
dS,:

¥ distance from reflector, dS,. to receiver.
ds,:

o reflectivity of reflector:
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B, brightness of source dS,;

unit normal of emitter, reflector and

receiver, respectively;

unit vector in the direction of radiation

from emitter to reflector;

i, unit vector in the direction of the radiation
from reflector to receiver;

degs, - asy energy flux density for radiation emitted
by dS,, specularly reflected by dS,, and
received by dS,;

dF 45, - as, specular view function which represents

that portion of radiant flux leaving source
ds,, specularly reflected by dS,, and
incident upon dS,.

1. INTRODUCTION

In REFERENCE [1] a technique is described for calculating
the flux density, that is, the energy per unit area per unit
time over an arbitrary receiver surface when the incident
radiation is specularly reflected from an arbitrary reflecting
surface. The surface equation of both the receiver and
reflector surface are expressed in the explicit cartesian form,
z = z(x, y). In this paper the problem is formulated in general
curvilinear coordinates. An expression is derived for the
view function for radiation leaving an element of area dS,,
specularly reflected by dS, and incident upon dS,. These
results are used to calculate the heat flux emitted from a fin
at one end of a cylinder, reflected by the cylinder and
received by a fin at the other end. Results may be compared
with the same problem treated by the image method of [2].

2. GENERAL FORMALISM

The energy flux per unit receiver area dS, for radiation
which is emitted by dS,, intercepted by dS; and then
specularly reflected to dS, is given by the flux flow equation

[

pBn,.in, . idS,
dejo o= e 1
dSomdir p21dS,/dS, | ()
Equations for the reflector surface and the receiver surface

in parametric form are
x = x(u, )] + y(u, v} + z(u. v)K

X = X(U, VI + Y(U, VW + Z(U, V)K

(2a)
{2b)

where u,v and U,V are curvilinear coordinates [3]. The
equation of the reflected ray is

Fiu,v; U, V)= iu, )[ X(U, V) — x(u, )]
—(u,0[Z(U, V) - z(u,v)] = 0
Faylu,v; U, V) = i(u, ) [ Y(U, V) — y(u,v)]
— (. O[Z(U, V) ~ 2, 0)] = 0

(3)
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where (if, , i;) specify the direction of reflected ray which
satisfies the law of reflection and are the components of

¥ =i—2n.n,)

_Analogous to [1] the ratio dS,/dS, appearing in (1) can be
written as

ds, _ [(2X/oU) x (8X/eV) | &(U,V)

- = 4)
ds, [(@x/du) x (0x/v)|  Ou,v)

where the functional relationship between w,v and U,V
required to evaluate the jacobian &(U, V)/d(u, v) = (6U/du)
(8V/dv) — (0U/0v)(0V/u) is given by (3). From the quotient
property of jacobians [3]

AU V) _ B(F, F)/a(u,v)
du,v) ~ 8(F, F,)oU, W

The jacobians o(F,, F,)/d(u, v) and O(F,, F,)/d(U, V) can be
evaluated directly from (3) by using the chain rule for partial
differentiation, for example,

oF, Ox 0z o Ol

i S S NG S s — x)—=.
Ju ,’8u+l’6u (Z )6u+(X x)au

(&

One obtains the results
O(F, F /o, v) = i{I, + r'l, + (r)*1,}
oF |, F)o(U, V) = i{i .(0X/0U) x (6X/oV)}

where

I, =i .(Cx/¢u)x(8x/dv)

I, =7 .[(0x/0u) x (0¢'/0v) + (OF jou) x (Bx/0v)]
I, = ' .(07/0u) x {0F[dv)

¥=(Z - z)fi,.

Combining (4), (5) and (6) with (1) gives an explicit expression
fordeyg _ 4,

Since the view function for specular reflection,
dF 5 _ 45, TEPresents that portion of the radiant flux leaving
an element of area dS,, specularly reflected by dS,, and
then incident upon dS, one can write a general expression
for the specular view function as

[(de )dS,]
dF B — £ 7dSo-dS; 2
dSo—dS; S{Bdsﬂ

_ pno.inl.inz.i’](ax/au) X ([)x/av)|dS0 ds,
Sorr?| 1, + ¥I, + (r)*1,) )

M

The brightness B is regarded as constant over S,,. The terms
Iy, 1,, 1, express the role of the curvature of the reflector
surfac.e in the.ﬁnal expression for d.e aso—as; 9T AF g g5,

It is possible to express (7) in terms of the intrinsic
geometry of the reflector surface, that is, the gaussian, the
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mean, and the normal curvature. When this is done and the
curvature is allowed to go to zero, that is, when the element
of reflector surface is degenerated to a flat element of surface.
(7) becomes

pn, LidS,dS,

dF DU el 22 ]
dSp—dS» ﬂS()(V 4 ’."2 (8)

Equation (8) is the formula given by [2] for the specular
view function but we see that all curvature terms are missing.
Thus view function of [2] does not represent the proper
generalization to curved surfaces.

SHORTER COMMUNICATIONS

using (8). Because of the axial symmetry the energy flux
per unit area emitted by the right fin and received by the left
fin is independent of the azimuthal angle , of the receiver
coordinates. Thus, we can fix dS, at z, = 0. The clement of
receiver area dS, is defined by a point P, = (X, Y, Z} ==
(0, p, 0) where p is the radial distance from the origin of the
left fin. The emitter point and reflector point are similarly
defined by the points p, = (g sin x,, g cos a,, L) and P =
{x, y, 2} = (asin w, a cos o, z), respectively, where g and «,
are the radial and azimuthal coordinates of the emitting
point on the right fin, and z and w are the axial and azimuthal
coordinates of the reflecting point on the cylinder wall. In

Fi1G. 1. Double finned cylinder.

The energy received per unit area of receiver surface,
Fg, _as,» after being specularly reflected by the reflecting
surface expressed as a fraction of the total energy emitted
by the source is obtained by dividing (7) by dS, and inte-
grating over S,. Similarly, the fraction of the total energy
Fg s, emitted by the source surface, specularly reflected,
and received by the receiver surface is obtained by integrat-
ing (7) over S, and §S,.

3. EXAMPLE

As an example of the use of the preceding formulas we
shall calculate the fraction of the energy emitted by a fin
8, specularly reflected by a cylinder, S, and received by a
second fin, S, (Fig. 1). This will be shown as a function of
the receiving fin radial coordinate (flux contours). The total
specular view factcr, F So— 82 for the receiving fin will also
be calculated. The latter calculation is performed in [2]

terms of these coordinates one can write the following
expressions:

1. Normal on reflecting surface:

n, =sinwl + coswl. (9a}
2. Unit vector along direction of incident radiation form
P, to P;
i=f{asinw — gsina )l + (@acosw — gcosxy)JS

+ (z — LK]/r (9b)

wherer? = a® 4+ q> + (L— 2)* — 2ag cos (o, — w).
3. Unit vector along direction of reflected radiation form
P toP,:
i' = {[gsin (2w — oy) ~ asin w]l + [gcos 2w ~ a,)

—acosw]d +(Z — LIK}/r. {9¢)
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FI1G. 2. Fraction of energy emitted by right fin, specularly

reflected from cylinder wall and intercepted per unit area

of receiving fin as a function of dimensionless radial coordin-
atep/aforM = b/a = 2.

Combining (9c) with (3) one has the following equations
for the reflected ray:

X = asinw + z[gsin 2w — o) — asin L ~ 2)

015
014
013
012
011

010
009
008
oo7

Specuiar view factor
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Y = acoso + z[gcos 2w — ay) — acos w]/(L — 2).
(10)

Evaluating the functions I, I, I, from (6) with z, w as the
variables #, v and assuming that the reflectivity of the
cylinder wall is unity one obtains the following expression
for fraction of the total energy flux per unit area on receiver
surface, S, in terms of the dimensionless quantities
{ = p/a,n = g/a, B = z/ja, M = bja,and N = Lja;

M cos “1(1/8)+cos L(1/m)

dFy, s 1 J
-2 = d do
as, =M -n)" o
1

—cos ~ 1(1/g)~cos ~1(1/n)

1ln cos (@ — ) — (B — N)*
(1472 +(N ~B)*—2n cos (w—ay)])* | [nN@B — N)
% €08 (0 — %) —2BN(1+1?)+ N?|

(11)

where the limits of «; are such that n.i = 0. Before (11)
can be integrated, one must eliminate § and w. This can be
done by solving (10) for z(= Ba) and w

B = N({ - cos w)/[¢ + ncos 2o — #,) — 2cos ]

sin 2w — og) =4~ 'sinw + ¢ 'sin(w — o). (12)

The results for (dFg, _45,)/dS, as a function of { for N =0-5,
1,2,4,8and M = 2 are presented in Fig. 2.

Integrating (11) over dS,(= pdpda, = {d; da,) gives
the fraction of the total energy Fg__ g, emitted by the source,
specularly reflected and received by S,. The results for F, .

10 20 30 40 50

60 7-0 80 90 100
M=b/a

F1G. 3. Fraction of energy cmitted by right fin, specularly
reflected by cylinder wall, and received by left fin.
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as a function of M for five different values of N are presented
inFig. 3.

For comparison, the fraction of the total energy emitted
by S, and directly incident upon S,, without reflection, is
shown in Fig. 4.
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FIG. 4. Fraction of energy emitted by right fin and received
directly by left fin without reflection.
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NOMENCLATURE
Cp specific heat;
h, enthalpy;
h,,, latent heat of vaporization;
k, thermal conductivity;
K, permeability;
L, length of porous section;
m, mass flow rate per unit area = pv;
P, pressure;
Pe,  Péclét number = mC,L/k = RePrL/d;
q, heat flux per unit area;
S, interface position;
T, temperature;
X, distance coordinate.

Greek symbols

A, conduction—convection difference;
g, dimensionless temperature:

a, viscosity;

v, kinematic viscosity = p/p;

0. convection—conduction ratio.

Dimensionless quantities

Lerr

= dg,/dS.

C, = Cp/Chus

F, = m,/m;;

H, = h(T*Y[h(T*) — h(TR)]:
R, =v,/v.;

8, = Ld/ke ((T* — Tp):

K. = LT

<
<



